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Abstract— We present a framework for approximating the
metric TSP based on a novel use of matchings. Traditionally,
matchings have been used to add edges in order to make a given
graph Eulerian, whereas our approach also allows for the removal
of certain edges leading to a decreased cost.

For the TSP on graphic metrics (graph-TSP), the approach yields
a 1.461-approximation algorithm with respect to the Held-Karp
lower bound. For graph-TSP restricted to a class of graphs that
contains degree three bounded and claw-free graphs, we show
that the integrality gap of the Held-Karp relaxation matches the
conjectured ratio 4/3. The framework allows for generalizations in
a natural way and also leads to a 1.586-approximation algorithm
for the traveling salesman path problem on graphic metrics where
the start and end vertices are prespecified.
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1. INTRODUCTION

The traveling salesman problem in metric graphs is one of
most fundamental NP-hard optimization problems. In spite
of a vast amount of research several important questions
remain open. While the problem is known to be APX-hard
and NP-hard to approximate with a ratio better than 220,/219
[23], the best upper bound is still the 1.5-approximation
algorithm obtained by Christofides [4] more than three
decades ago. A promising direction to improve this approxi-
mation guarantee has long been to understand the power of a
linear program known as the Held-Karp relaxation [14] used
by Dantzig, Fulkerson, and Johnson [6] already in 1954. On
the one hand, the best lower bound on its integrality gap
(for the symmetric case) is 4/3 and indeed conjectured to be
tight [10]. On the other hand, the best known analysis [25],
[26] is based on Christofides’ algorithm and gives an upper
bound on the integrality gap of 1.5.

In the light of this difficulty of even determining the
integrality gap of the Held-Karp relaxation, a reasonable
way to approach the metric TSP is to restrict the set of
feasible inputs. One promising candidate is the graph-TSP,
that is, the traveling salesman problem where distances
between cities are given by any graphic metric: the distance
between two cities is the length of the shortest path in a
given (unweighted) graph. Equivalently, graph-TSP can be
formulated as the problem of finding an Eulerian multigraph
within an unweighted input graph so as to minimize the
number of edges. In contrast to TSP on Euclidean metrics
that admits a PTAS [1], [17], the graph-TSP seems to capture
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the difficulty of the metric TSP in the sense that, as stated
in [12], it is APX-hard and the lower bound 4/3 on the
integrality gap of the Held-Karp relaxation is established
using a graph-TSP instance.

The TSP on graphic metrics has recently drawn consider-
able attention. In 2005, Gamarnik et al. [9] showed that for
cubic 3-edge-connected graphs, there is an approximation
algorithm achieving an approximation ratio of 1.5 — 5/389.
This result was generalized to cubic graphs by Boyd et
al. [3], who obtained an improved performance guarantee
of 4/3. For subcubic graphs, i.e., graphs of degree at most
3, they also gave a 7/5-approximation algorithm with respect
to the Held-Karp lower bound. In a major achievement,
Oveis Gharan et al. [22] recently presented an approximation
algorithm for graph-TSP with performance guarantee strictly
better than 1.5. The approach in [22] is similar to that of
Christofides in the sense that they start with a spanning tree
and then add a perfect matching of those vertices of odd-
degree to make the graph Eulerian. The main difference is
that instead of starting with a minimum spanning tree, their
approach uses the solution of the Held-Karp relaxation to
sample a spanning tree. Although the proposed algorithm
in [22] is surprisingly simple, the analysis is technically
involved and several novel ideas are needed to obtain the
improved performance guarantee 1.5 — e for an e of the
order 10712,

Our Results and Overview of Techniques: We propose
an alternative framework for approximating the metric TSP
and use it to obtain an improved approximation algorithm
for graph-TSP.

Theorem 1.1. There is a polynomial time approxima-
tion algorithm for graph-TSP with performance guarantee

14-(v/2-1)
T2v/5-13 < 1.461.

The result implies an upper bound on the integrality gap
of the Held-Karp relaxation for graph-TSP that matches
the approximation ratio. For the restricted class of graphs,
where each block (i.e., each maximally 2-vertex-connected
subgraph) is either claw-free or of degree at most 3, we
use the framework to construct a polynomial time 4/3-
approximation algorithm showing that the conjectured in-
tegrality gap of the Held-Karp relaxation is tight for those
graphs. The techniques allow us to prove the tight result



that any 2-vertex-connected graph of degree at most 3 has a
spanning Eulerian multigraph with at most 4n/3—2/3 edges,
which settles a conjecture of Boyd et al. [3] affirmatively.

Our framework is based on earlier works by Frederickson
& Ja’ja’ [8] and Monma et al. [19], who related the cost of
an optimal tour to the size of a minimum 2-vertex-connected
subgraph. More specifically, Monma et al. showed that a 2-
vertex-connected graph G = (V, E) always has a spanning
Eulerian multigraph with at most |FE| edges, generalizing
a previous result of Frederickson & Ja’ja’ who obtained the
same result for the special case of planar 2-vertex-connected
graphs. One interpretation of their approaches is the follow-
ing. Given a 2-vertex-connected graph G = (V, E), they
show how to pick a random subset M of edges satisfying: (i)
an edge is in M with probability 1/3 and (ii) the multigraph
H with vertex set V and edge set £ U M is spanning and
Eulerian. From property (i) of M, the expected number of
edges in H is %|E| yielding their result.

Although the factor 4/3 is asymptotically tight for some
classes of graphs (one example is the family of integrality
gap instances for the Held-Karp relaxation described in
Section 2), the bound rapidly gets worse for 2-vertex-
connected graphs with significantly more than n edges. The
novel idea to overcome this issue is the following. Instead
of adding all the edges in M to G, some of the edges in M
might instead be removed from G to form H. As long as
the removal of the edges does not disconnect the graph, this
will again result in a spanning Eulerian multigraph H. To
specify a subset I? of edges that safely may be removed we
introduce, in Section 3, the notion of a “removable pairing”.
The framework is then completed by Theorem 3.2, where we
show that a 2-vertex-connected graph G = (V, E) with a set
R of removable edges has a spanning Eulerian multigraph
with at most 3|E| — 2|R| edges.

In order to use the framework, one of the main challenges
is to find a sufficiently large set of removable edges. We
first give a fairly easy method for finding such a set when
considering subcubic graphs. To deal with general graphs,
we then, in Section 4, generalize these ideas and show that
the problem of finding a large set of removable edges can be
reduced to that of finding a min-cost circulation in a certain
circulation network. To analyze the circulation network we
use (in Section 5) several properties of an extreme point
solution to the Held-Karp relaxation to obtain our main
algorithmic result.

Finally, we note that the techniques generalize in a natural
way. Our results can be adapted to the more general traveling
salesman path problem (graph-TSPP) with prespecified start
and end vertices to improve on the approximation ratio of
5/3 by Hoogeveen [15] when considering graphic metrics.
More specifically, we obtain the following.

Theorem 1.2. For any € > 0, there is a polynomial time
approximation algorithm for graph-TSPP with performance
guarantee 3 — /2 + ¢ < 1.586 + ¢.

If furthermore each block of the given graph is degree
three bounded, there is a polynomial time approximation al-
gorithm for graph-TSPP with performance guarantee 1.5+-¢,
for any € > 0.

Due to space constraints, the proof of this theorem can
be found in the full version [18].

2. PRELIMINARIES

Held-Karp Relaxation: The linear program known as
the Held-Karp (or subtour elimination) relaxation is a well
studied lower bound on the value of an optimal tour. It has
a variable wy, .y for each pair of vertices with the intuitive
meaning that x, .3 should take value 1 if the edge {u, v}
is used in the tour and O otherwise. Letting G = (V, F) be
the complete graph on the set of vertices and cy,, ,) be the
distance between vertices u and v, the Held-Karp relaxation
can then be formulated as the linear program where we wish
to minimize ) CeT. subject to

c€E
z(6(v)) =2 forveV,
z(6(8)) >2 forh £S5 CV, and
T >0,

where §(S) denotes the set of edges crossing the cut (S,5)
and z(F) = cp e forany F' C E.

Goemans & Bertsimas [11] proved that for metric dis-
tances the above linear program has the same optimal value
as the linear program obtained by dropping the equality
constraints. Moreover, when considering a graph-TSP in-
stance G = (V, E) we only need to consider the variables
(z¢)ecr- Indeed, any solution z to the Held-Karp relaxation
without equality constraints such that xy,,; > 0 for a
pair of vertices {u,v} ¢ E can be transformed into a
solution =’ with no worse cost and xf{u’v} = 0 by setting
T, = Te+Ty,) for each edge on the shortest path between
u and v, and af, = z. for the other edges. The Held-Karp
relaxation for graph-TSP on a graph G = (V, E) can thus
be formulated as follows:

min g Te

eckE
s. t. z(6(S))>2 forh#SCV, and
T > 0.

We shall refer to this linear program as LP(G) and denote
the value of an optimal solution by OPTLp(G). Its inte-
grality gap was previously known to be at most 3/2 — ¢
and at least 4/3 for graphic instances. The lower bound
is obtained by a claw-free graphic instance of degree at
most 3 that consists of three paths of equal length with
endpoints (s1,t1), (s2,t2), and (s3,t3) that are connected
so as {s1, 82,83} and {t1,t2,t3} form two triangles (see
Figure 1).

We end our discussion of LP(G) with a useful obser-
vation. When considering graph-TSP, it is intuitively clear
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Figure 1. Graph for which the Held-Karp relaxation has an integrality

gap tending to 4/3. Any tour has value approaching 4n/3 whereas the
relaxation has a solution of value n obtained by setting the fractional value
of the dashed and solid edges to 1/2 and 1, respectively.

that we can restrict ourselves to 2-vertex-connected graphs,
i.e., graphs that stay connected after deleting a single vertex.
Indeed, if we consider a graph with a vertex v whose removal
results in components C,...,Cy with £ > 1 then we can
recursively solve the graph-TSP problem on the ¢ subgraphs
G1, G, ..., Gy induced by C1U{v}, CoU{v}, ..., CoU{v}.
The union of these solutions will then provide a solution to
the original graph that preserves the approximation guaran-
tee with respect to the linear programming relaxation since
one can see that OPT.p(G) > Zle OPT.p(G;). We
summarize this observation in the following lemma (see the
appendix for a full proof).

Lemma 2.1. Let G be a connected graph. If there is an
r-approximation algorithm for graph-TSP on each 2-vertex-
connected subgraph H of G (with respect to OPTp(H))
then there is an r-approximation algorithm for graph-TSP
on G (with respect to OPTLp(QG)).

Matchings of Cubic 2-Edge-Connected Graphs: Ed-
monds [7] showed that the following set of equalities and
inequalities on the variables (z.).c g determines the perfect
matching polytope (i.e., all extreme points of the polytope
are integral and correspond to perfect matchings) of a given
graph G = (V, E):

z(6(v)) =1 forvelV,
z(6(S)) >1 for S CV with |S| odd, and
T > 0.

The linear description is useful for understanding the struc-
ture of the perfect matchings. For example, Naddef and
Pulleyblank [21] proved that z. = 1/3 defines a feasible
solution when G is cubic and 2-edge connected, i.e., every
vertex has degree 3 and the graph stays connected after the
removal of an edge. They used that result to deduce that
such graphs always have a perfect matching of weight at
least 1/3 of the total weight of the edges.

Standard algorithmic versions of Carathéodory’s theorem
(see e.g. Theorem 6.5.11 in [13]) say that, in polynomial
time, we can decompose a feasible solution to the perfect
matching polytope into a convex combination of polynomi-
ally many perfect matchings (see also [2] for a combinatorial
approach for the matching polytope). Combining these re-
sults leads to the following lemma (see [3], [9], [19] for

closely related variants that also have been useful for the
graph-TSP problem).

Lemma 2.2. Given a cubic 2-edge-connected graph G, we
can in polynomial time find a distribution over polynomially
many perfect matchings so that with probability 1/3 an edge
is in a perfect matching picked from this distribution.

Note that all 2-vertex-connected graphs except the trivial
graph on 2 vertices are 2-edge connected. We can therefore
apply the above lemma to cubic 2-vertex-connected graphs.

3. APPROXIMATION FRAMEWORK

Lemma 2.1 says that the technical difficulty in approxi-
mating the graph-TSP problem lies in approximating those
instances that are 2-vertex connected. As alluded to in the
introduction, we shall generalize previous results [8], [19]
that relate the cost of an optimal tour to the size of a
minimum 2-vertex-connected subgraph. The main difference
is the use of matchings. Traditionally, matchings have been
used to add edges to make a given graph Eulerian whereas
our framework offers a structured way to specify a set of
edges that safely may be removed leading to a lower cost.
To identify the set of edges that may be removed we use
the following definition.

Definition 3.1 (Removable pairing of edges). Given a 2-
vertex-connected graph G we call a tuple (R, P) consisting
of a subset R of removable edges and a subset P C R X R
of pairs of edges a removable pairing if

« an edge is in at most one pair;

« the edges in a pair are incident to a common vertex of
degree at least 3;

« any graph obtained by deleting removable edges so that
at most one edge in each pair is deleted stays connected.

The following theorem generalizes the corresponding re-
sult of [19] (their result follows from the special case of an
empty removable pairing).

Theorem 3.2. Given a 2-vertex-connected graph G =
(V,E) with a removable pairing (R, P), there is a poly-
nomial time algorithm that returns a spanning Eulerian
multigraph in G with at most 4 - |E| — 2 - |R| edges.

The proof of the theorem is presented after the following
lemma on which it is based.

Lemma 3.3. Given a 2-vertex-connected graph G = (V, E)
with a removable pairing (R, P), we can in polynomial time
find a distribution over polynomially many subsets of edges
such that a random subset M from this distribution satisfies:
(a) each edge of G is in M with probability 1/3;
(b) at most one edge in each pair of P is in M; and

(c) each vertex has an even degree in the multigraph with
edge set E'U M.



Figure 2. Examples of the used gadgets to obtain a cubic graph.

Proof: We shall use Lemma 2.2 and will therefore need
a cubic 2-edge-connected graph. In the spirit of [8], we
replace all vertices of G that are not of degree three by
gadgets to obtain a cubic graph G’ = (V', E’) as follows
(see also Figure 2):

o A vertex v of degree 2 with neighbors u and w is
replaced by a cycle consisting of four vertices vy, vy,
vg, vg with the chord {vy,vg}. The gadget is then
connected to the neighbours of v by the edges {u, vy}
and {vg,w}.

o A vertex v with d(v) > 3 is replaced by a tree T, that
has |d(v)/2] leaves, a binary root if d(v) is odd, and
otherwise only degree 3 internal vertices. Each leaf is
connected to two neighbours of v such that the edges
incident to v that form a pair in P are incident to the
same leaf. If d(v) is odd, one of the neighbors is left
and connected to the binary root.

The above gadgets guarantee that the graph G’ is cubic
and it is 2-vertex connected since G was assumed to be
2-vertex connected. We can therefore apply Lemma 2.2 in
order to obtain a random perfect matching M’. Each edge of
G’ is in M’ with a probability of exactly 1/3. Let M be the
set of edges obtained by restricting M’ to the edges of G
in the obvious way. Now M contains each edge of G with
probability 1/3. Note that in general M is not a matching.

We complete the proof by showing that M also satisfies
properties (b) and (c¢). As each pair of edges in P is incident
to a vertex of degree at least 3, we have, by the construction
of the gadgets, that they are incident to a common vertex
in G’ and hence at most one edge of each pair is in M.
Finally, property (c) follows from that E' U M’ is clearly a
spanning Eulerian multigraph of G’ and compressing a set
of even-degree vertices results in one vertex of even degree.

|

Equipped with the above lemma we are now ready to
prove the main result of this section.

Proof of Theorem 3.2: Pick a random subset M C F
of edges that satisfies the properties of Lemma 3.3. Let Mg
be the set of those edges of M that are removable and let
Mp, be the set of the remaining edges of M.

Consider the multigraph [ on vertex set V' and edge
set (E'\ Mg) U Mpg. Observe that both adding an edge
and removing an edge swaps the parity of the degree of
an incident vertex. We have thus from property (c) of
Lemma 3.3 that the degree of each vertex in H is even.

Moreover, as (R, P) is a removable pairing, property (b) of
Lemma 3.3 gives that I is connected. Alltogether we have
that H is an Eulerian graph, i.e., a graph-TSP solution. We
continue to calculate its expected number of edges, which
is

E[|E| 4+ |Mg| — |Mg]|). (1

Using that each edge is in M with probability 1/3, we have,
by linearity of expectation, that (1) equals

|E|+ (IE| = |R]) —*lRl I—* |-

To conclude the proof, we note that the selection of
M can be derandomized since there are, by Lemma 3.3,
polynomially many edge subsets to choose from; taking the
one that minimizes the number of edges of H is sufficient.

|

With Theorem 3.2, we have already the core ingredient
to show our results on bounded degree graphs for which we
obtain a tight bound on the integrality gap of the Held-Karp
relaxation. We note that the result can also be seen as a
corollary (see Section 5.1) of the more involved techniques
introduced in Section 4 for the general case. However, the
easier and more direct proof that we sketch here gives
valuable insights in the concept of removable edges and also
motivates the approach developed in Section 4 for general
graphs.

Lemma 3.4. Given a 2-vertex-connected graph G with n
vertices of degree at most 3, there is a polynomial time
algorithm that computes a spanning Eulerian multigraph H
in G with at most 4n/3 — 2/3 edges.

Proof Sketch: Theorem 3.2 says that in order to
find a short tour it is sufficient to find a large enough
removable pairing (R, P). For subcubic graphs, this can be
done as follows (see Figure 3(a) for an example):

(a) Obtain a spanning tree 7' of G by depth-first search
(starting from some arbitrary root ). We call the edges
in T' tree-edges and the others back-edges. Note that
each back-edge connects a vertex to either one of its
predecessors or one of its successors in 71'.

(b) Define the set P by pairing each back-edge e = {u, v}
with the adjacent tree-edge ¢’ = {v,w}, where u is
a successor of v in T and ¢’ is on the path to u in
T (unless v is of degree 2 or the tree-edge is already
paired, which can only happen if v = r).

(c) Form the set R of removable edges by taking all back-
edges and the paired tree-edges.

Using that the graph G is subcubic and that T is a depth-first

search tree, one can verify that (R, P) indeed is a removable

pairing. Moreover, as all back-edges (| E|—(n—1) many) are
removable and each one of them except one (incident to the

root) is paired with a tree-edge, we have |R| = 2(|E|— (n—

1)) — 1. The claimed result now follows from Theorem 3.2.

|



Figure 3. (a): Example of the pairing obtained for subcubic 2-vertex-
connected graphs. The pairs are depicted with arrows and the tree-edges and
back-edges are solid and dashed, respectively. (b): For graphs of arbitrary
degree it is more complex to find a large enough removable pairing since
not each back-edge can be paired with a (unique) tree-edge.

Note that the proof of Lemma 3.4 relied on finding a
large enough set of removable edges with respect to the total
number of edges in order to apply Theorem 3.2. This could
be achieved because for subcubic graphs basically each
back-edge can be paired with a unique tree-edge. For general
graphs, this is not the case as can be seen for example by
looking at the root of the graph depicted in Figure 3(b).
However, further inspection of that graph reveals that the
subgraph consisting of the tree-edges and the fat back-edges
is still 2-vertex connected and allows for a similar pairing as
in the subcubic case. This motivates the following approach
for general graphs: find a depth-first search tree and then find
a subset of back-edges so that the resulting graph is 2-vertex
connected and the number of back-edges not paired with a
tree-edge is minimized. In the next section we show how to
find such a subset of back-edges by computing a minimum
cost circulation. We then, in Section 5.2, show how the Held-
Karp relaxation can both guide us in the selection of the
depth-first search tree and help us in analyzing the cost of
the circulation flow, which in turn leads to the improved
approximation guarantee for general graphs.

4. FINDING A REMOVABLE PAIRING BY MINIMUM COST
CIRCULATION

In order to use our framework, one of the main chal-
lenges is to find a removable pairing that is sufficiently
large. In the following, we show how to obtain a useful
removable pairing based on circulations.

Consider a 2-vertex connected graph G and—as in the
proof sketch of Lemma 3.4—let T' be a spanning tree of
G obtained by depth-first search. Thus 7" is composed of
tree-edges and the remaining edges in G but not in 7" are
back-edges.

We shall now define a circulation network C'(G,T). We
start by introducing an orientation of G: all tree-edges
become tree-arcs directed from the root to the leaves and all
back-edges become back-arcs directed towards the root. To

Figure 4. The gadget that, for each child of v, introduces a new vertex
(depicted in white) and redirects back-arcs.

distinguish the circulation network and the original graphs,
we use the names and for the network versions of
G and T. In order to ensure connectivity properties of
subnetworks obtained from feasible circulations, we replace
some of the vertices by gadgets as follows.

For each vertex v except the root that has ¢ children
w1y, Wa,...,we in the tree, we introduce ¢ new vertices
v1,2,...,vp and replace the tree-arc (v,w;) by the tree-
arcs (v, v;) and (v;,w;) for j = 1,2, ..., ¢. Then we redirect
all incoming back-arcs of v from the subtree rooted by w; to
v;. For an illustration of the gadget see Figure 4. This way,
all back-arcs start in old vertices and lead to new vertices or
the root. In the following, we call the new vertices and the
root in-vertices and the remaining (old) ones out-vertices.
We also let 7 be the set of all in-vertices.

We now specify a lower bound (demand) and an upper
bound (capacity) on the circulation. For each arc a in 7',
we set the demand of a to 1 and for all other arcs to
0. The capacity is oo for any arc. Finally, the cost of a
circulation f in C(G,T) is the piecewise linear function
> ez max[f(B(v)) — 1,0], where B(v) is the set of in-
coming back-arcs of v. One can think of the cost as the
total circulation on the back-arcs except that each in-vertex
accepts a circulation of 1 for free; the intuition being that
we would like to minimize the number of back-arcs that
cannot be paired with tree-arcs and only one back-arc in
B(v) can be paired with the tree-arc going out from wv.
Note that algorithmically there is no considerable difference
whether we use our cost function or define a linear cost
function on the arcs: for each in-vertex v we introduce a
new vertex v’ and redirect all back-arcs of v to v’ while
setting their costs to 0. Then we introduce two arcs (v’,v),
one of cost 0 and capacity 1 and the other of cost 1 and
capacity oo.

The following lemma shows how to use a circulation in
C(G,T) to approximate graph-TSP.

Lemma 4.1. Given a 2-vertex connected graph G and a
depth first search tree T of G let C* be the minimum
cost circulation to C(G,T) of cost ¢(C*). Then there is
a spanning Eulerian multigraph H in G with at most
3n+4 2¢(C*) —2/3 edges.



Proof: ~ We first note that, for any arc of C(G,T),
the demand and the capacity are integral. Therefore, ap-
plying Hoffman’s circulation theorem (see [24], Corollary
12.2a), we can assume the circulation C* to be integral. Let
C*(G,T) be the support of C* in C(G,T), i.e., the induced
subgraph of the arcs with non-zero circulation in C*, and
let H be the subgraph of G obtained from C*(G,T) by
compressing the gadgets of the circulation network in the
obvious way.

To prove the lemma, we shall first prove that graph H
is 2-vertex connected and then define a removable pairing
(R, P) on H in order to apply Theorem 3.2. That H is 2-
vertex connected follows from flow conservation, that each
arc @ in has demand 1, and the design of the gadgets.
Indeed, if H had a cut vertex v with children wy, wo, ..., w,
in T' then one of the subtrees, say the one rooted at wyj,
would have no back-edges to the ancestors of v which in
turn, by flow conservation, would contradict that the tree-
arc (v,v;) in T carries a flow of at least 1. (Recall that
the edge {v,w;} in T is replaced by tree-arcs (v,v;) and
(Uj, ’U)j) in )

We now determine a removable pairing (R, P) on H. For
ease of argumentation we shall first slightly abuse notation
and define a removable pairing (R¢, Po) on C*(G,T). The
set P consists of all (e, e’) such that e = (u, v) is a back-
arc of cost 0 in C*(G,T), v has at least two incoming
arcs, and ¢ = (v,w) is a tree-arc. Note that each such
v is an in-vertex, the number of incoming back-arcs of
cost zero is at most one, €' is the unique outgoing tree-
arc of v, and the only possible vertex v with only one
incoming back-arc and no other incoming arc is the root.
The set R¢ contains all arcs from Po and additionally all
remaining back-arcs of C*(G, T). In other words, each arc
of C*(G,T) that is neither in 7 nor in Pg is a back-arc
with integer non-zero cost in the circulation or a back-arc to
the root. Hence, |R¢| — 2| Pc| = ¢(C*) if the root has more
than one incoming back-arc and |R¢| — 2| Po| = ¢(C*) 4+ 1
otherwise. Note that the minimality of C* implies that its
back-arcs have flows of at most 1 each.

The removable pairing (R, P) on H is now obtained from
(R¢, Pc), by merely compressing the gadgets used to form
C(G,T) and by dropping the orientations of the arcs. As
all edges in R¢ are either back-arcs or they are tree-arcs
starting from an in-vertex, no arc in R¢c is removed by
the compression and thus |R| = |R¢| and |P| = |Pcl|.
Moreover, H has (n — 1) + |R| — | P| edges and, assuming
(R, P) is a valid removable pairing, Theorem 3.2 yields that
H (and thus G) has a spanning Eulerian multigraph with at
most 4 (n—1)+|R|—| P)~3|R| = §n+3(|RI=2|P))~4 <
an + 2¢(C*) — 2 edges. The last inequality follows from
that |R| — 2|P| is at most ¢(C*) + 1.

Therefore, we can conclude the proof by showing that
(R, P) is a valid removable pairing. It is easy to verify that

(R, P) satisfies the first two conditions of Definition 3.1,
that is, each edge is contained in at most one pair and the
edges in each pair are incident to one common vertex of
degree at least three. The third condition follows from that,
for any vertex v of H, the vertices in the subtree T, of
T rooted at v form a connected subgraph of H even after
removing edges according to (R, P). To see this we do a
simple induction on the depth of v. In the base case, v is
a leaf and the statement is clearly true. For the inductive
step, consider a vertex v with ¢ children wi,ws, ..., wy
in T'. By the inductive hypothesis, the vertices in Ty, for
j = 1,2,...,¢ stay connected after the removal of edges
according to (R, P). To complete the inductive step it is thus
sufficient to verify that v is connected to each T, after the
removal of edges. If {v,w;} is not in R this clearly holds.
Otherwise if e; = {v,w;} € R then by the definition of
(R, P) there is an edge e such that (e,e;) € P and e is
incident to v and a vertex in T),,. Since at most one edge
in each pair is removed we have that v also stays connected
to Ty, in this case, which completes the inductive step.
We have thus proved that (R, P) satisfies the properties
of a removable pairing which completes the proof of the
statement.

|

5. IMPROVED APPROXIMATION ALGORITHMS

We first show how to apply our framework by formally
proving Lemma 3.4. We then show how to use our frame-
work to obtain an improved approximation algorithm for
general graphs.

5.1. Bounded Degree and Claw-Free Graphs

Lemma 3.4 (Restated) Given a 2-vertex-connected graph G
with n vertices of degree at most 3, there is a polynomial
time algorithm that computes a spanning Eulerian multi-
graph H in G with at most 4n/3 — 2/3 edges.

Proof: If G has one or two vertices, we obtain an
Eulerian multigraph of zero or two edges. Otherwise, we
compute a depth-first search tree 7' in G and determine
the circulation network C'(G,T). We now show that this
network has a feasible circulation f of cost at most one. Let
us assign a circulation of one to each back-arc e in C'(G,T)
and push it through the path in ? that is incident to both the
start and end vertex of e. By the construction of C'(G,T') and
from the assumption that G is 2-vertex connected, each tree-
arc is in a directed cycle that contains exactly one back-arc.
Therefore, all demand constraints are satisfied. Due to the
degree-bounds, no vertex but the root may have more than
one incoming back-arc. The cost ) _; max[f(B(v))—1,0]
of the circulation is therefore at most one and zero if the
root has only one back-arc. If the circulation cost is zero,
by Lemma 4.1 we obtain a spanning Eulerian multigraph H
in G with at most 4n/3 — 2/3 edges. For those circulations



where the cost is one, the proof of Lemma 4.1 allows to
save an additional constant of 2/3 (since then the root has
more than one incoming back-arc) and we obtain the same
bound on the number of edges.

|
Note that it is sufficient to find a 2-vertex-connected degree
three bounded spanning subgraph (a 3-trestle) and thus,
using a result from [16], we can apply Lemma 3.4 also
to claw-free graphs. Applying Lemma 2.1, we obtain an
upper bound of 4/3 on the integrality gap for the Held-Karp
relaxation for the considered class of graphs. In addition,
along the lines of the proof of Lemma 2.1, one can see
that the above arguments imply that any connected graph
G decomposed into k blocks, i.e., maximal 2-connected
subgraphs, such that each block is either degree three
bounded or claw-free, has a spanning Eulerian multigraph
with at most 4n/3 + 2k/3 — 4/3 edges.

5.2. General Graphs

We now apply our framework to graphs without degree
constraints. We start with an algorithm that achieves an
approximation ratio better than 3/2 for graphs for which
the linear programming relaxation has a value close to
n. Let G = (V,E) be an n-vertex graph. The support

= {e : 2} > 0} of an extreme point z* of LP(G)
is known to contain at most 2n — 1 edges (see Theorem 4.9
in [5]). Moreover, if we let x* be an optimal solution,
then any r-approximate solution to graph G = (V,E’)
with respect to OPTyp(G’) is an r-approximate solution
to G with respect to OPTyp(G), because £/ C E and
OPTrLp(G") = OPTLp(G). We can thus restrict the anal-
ysis to n-vertex graphs with at most 2n — 1 edges and, by
Lemma 2.1, we can further assume the graph to be 2-vertex
connected.

Algorithm 1.

Input: A 2-vertex-connected graph G with n vertices and
at most 2n — 1 edges.

1: Obtain an optimal solution z* to LP(G).

2: Obtain a depth-first-search tree T of G by starting at
some root and in each iteration pick, among the possible
edges, the edge e with maximum z.

3: Solve the min cost circulation problem C(G,T) to
obtain a circulation C* with cost ¢(C*).

4: Apply Lemma 4.1 to find a spanning Eulerian multi-
graph with less than 3n + 2¢(C*) edges.

To analyze the approximation ratio achieved by Algo-
rithm 1, we bound the cost of the circulation.
Lemma 5.1. We have
¢(C*) < 6(1 = V2)n + (4V2 — 3)OPTLp(G).

Proof: For notational convenience, when considering an
arc a in the flow network, we shall slightly abuse notation

and use z} to denote the value of the corresponding edge
in G according to the optimal LP-solution x*. We prove the
statement by defining a fractional circulation f of cost at
most 6(1 —v/2)n + (4v/2 — 3)OPTp(G). The circulation
f will in turn be the sum of two circulations f’ and f”. We
obtain the circulation f’ as follows: for each back-arc a we
push a flow of size min|[x?, 1] along the cycle formed by a
and the tree-arcs in 7'. We shall now define the circulation
f" so as to guarantee that f forms a feasible circulation,
i.e., one that satisfies the demands f, > 1 for each a €

As out- and in-vertices are alternating in ? and in-vertices
have only one child in and no outgoing back-edges, a
sufficient condition for f to be feasible can be seen to be
fo > 1 for each a € ? that is from an out-vertex to an
in-vertex. To ensure this, we now define f” as follows. For
each vertex v of G that is replaced by a gadget consisting
of an out-vertex v and a set Z, of in-vertices, we push for
each w € Z, a flow of size max[1 — f{, 0] along a cycle
that includes the arc (v,w) (and one back-arc). Note that
such a cycle is guaranteed to exist since G was assumed to
be 2-vertex connected. From the definition of f”, we have
thus that f = f' + f” defines a feasible circulation.

We proceed by analyzing the cost of f, i.e.,
> ez max[f(B(v)) — 1,0], where Z is the set of all
in-vertices and B(v) is the set of incoming back-arcs
of v € Z. Note that the cost is upper bounded by
> ez max[f (B(v)) — 1,01+, .7 f"(B(v)) and we can
thus analyze these two terms separately. We start by bound-
ing the second summation and then continue with the first
one. If OPTp(G) = n then one can see that f” = 0.
Moreover,

Claim 5.2. We have

Z f//

veEL

< OPTLP(G)

Proof of Claim: When considering a vertex v as done
above in the definition of f”/, the flow pushed on back-arcs is
> wez, max[1—f(, . 0] which equals 3 .7/ (1= f(, )
where T, = {w € I, : f{, ) < 1}. Letting T, be the set of
vertices of (G in the subtree of the undirected tree 1" rooted
at the child of w € Z/,, we have, by the definition of f’,

f(/v,w) = Z Tw) \ 5(,0))
a€d(Tw)\o(v)

minf[z}, 1] = 2™ (6(

The second equality follows from that if 2} > 1 for some
a € 6(Ty) \ 6(v) then f, > 1 and hence w ¢ I,. We

have thus EweI’ (1 f(v w)) |Z!| — Zwez’,u x*(8(Tyw) \
d(v)). As we are considering a depth-first-search tree (see
Figure 5),

2 2 (6(Tw) \ 5(v)) =

weZLl



Figure 5. An illustration of Equality (2) with Z], = {w1,wa,...,we}:
both the left-hand-side and the right-hand-side of the equality express two
times the value of the fat edges.

> at(@6(Tw)+a* |6 | Twud{v}

well well

—z7(0(v))-
(@)

Since by the feasibility of * each of the sets corresponds
to a cut of fractional value at least 2, we use 2- (|Z) |+ 1) —
x*(6(v)) as a lower bound on (2).

Summarizing the above calculations yields

> (1= Fowy) = 1T = D2 2" (6(T0) \ 6())

weT, weT),
_ 2 (0)
- 2

Repeating this argument for each v we have

S B =3 S (1= fw)

veL veV wel]

<2 (=5

veV

— 1.

which equals OPTpp(G) — n since OPTpp(G)

3 2vev T°(0(0)). n
We proceed by bounding ., max[f'(B(v)) — 1,0
from above.

Claim 5.3. We have

S~ max(f/(B()) - 1,0]

veL

< (7-6vV2)n+4(vV2 - 1)OPTLp(G).

Proof of Claim: To analyze this expression we shall
use two facts. First G has at most 2n—1 edges, and therefore
the number of back-arcs is at most 2n — 1 — (n — 1) = n.
Second, as the depth-first-search in each iteration chooses
(among the available edges) the edge e with maximum z,
we have that z}; < x7 for each a € B(v) where t, is the
outgoing tree-arc of v € Z. Moreover, as f, = min[x}, 1] for

each back-arc, the number of back-arcs in B(v) is at least

[ ' (B(v))

m—‘ Combining these two facts gives us that

>lmweal <o

veEL

For v € Z, we partition f'(B(v)) into ¢, = min[2 —
x*(ty), f/(B(v))] and w, = f'(B(v)) — £,. Furthermore,
let u* =) _;u,. With this notation we can upper bound
> ver max[f’'(B(v)) —1,0] by

Z max[l, — 1,0] + u* 4
veL

and relax Inequality (3) to

l, .
Zm*(tv)gn—u. (5)

veL

The cost (4) (where we ignore ©*) subject to (5) can now
be interpreted as a knapsack problem of capacity n — u*
that is packed with an item of profit max[¢, — 1,0] and
size ¢, /x*(t,) for each v € Z. Consequently, we can upper
bound (4) by considering the fractional knapsack problem
with capacity n — «v* and infinitely many items of a maxi-
mized profit to size ratio. Associating a variable L with £,
and T" with .Z‘*(fv) this ratio is maxg<7<1,0<L<2—T % -T.
For any T the ratio is maximized by letting L = 2 — T and
we can thus restrict our attention to items with profit to size
ratio maxo<r<1 3== - T. A simple analysis shows that the
maximum is achieved when T' = 2 — /2. Therefore, taking

into account u*, the profit (4) is upper bounded by

V2-1
V2

As the fractional degree of a vertex v that is replaced by a
gadget with a set Z,, of in-vertices is at least 2+ Unys
we have v* < 2(OPTLp(G) —n). Hence,

@) < (V2-1)*- (n - 2(0PTLp(G) — n))
+2(0PTLP(G) - n)»

which equals (7 — 6v/2)n + 4(v/2 — 1)OPTLp(G). |

Finally, by summing up the bounds given by Claim 5.2
and Claim 5.3 we bound the cost of f and hence
c(C*) from above by OPTrp(G) — n + n(7 — 6v/2) +
4(v/2—-1)OPTLp(G), which equals 6(1 —v/2)n + (4v/2 —
3)OPTLP (G) . | |

Having analyzed Algorithm 1, we are ready to prove our
main algorithmic result.

(2=V2)-(n—u*)+u* = (V2—1)% (n—u*)+u*.

weL,

Theorem 1.1 (Restated) There is a polynomial time approx-

imation algorithm for graph-TSP with performance guaran-
14-(v/2-1)
T2viis < 1461

Proof: By Lemma 2.1 and the discussion before Algo-
rithm 1, we can restrict the analysis to n-vertex graphs that

tee
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Figure 6. The approximation ratios of Algorithm 1 and Christofides’

algorithm depending on the ratio OPT p(G)/n.

are 2-vertex connected and have at most 2n — 1 edges. The
statement now follows by using Algorithm 1 if OPT.,p(G)
is close to n and otherwise by using Christofides’ algorithm.

On the one hand, since Christofides’ algorithm returns
a solution with at most n — 1 + OPTp(G)/2 edges
(see [25] for an analysis of Christofides’ algorithm in terms
of OPTrp(@G)), it has an approximation guarantee of at

most

OPT.p(G)

On the other hand, by Lemma 5.1, the approximation
guarantee of Algorithm 1 is at most

4n+ 2 (6(1— v2)n + (42 — 3)OPTLp(G))
OPTLp(G) ’

In particular, the approximation guarantee of Algorithm 1
for a graph G with OPTLp(G) =n is

4/3+2/3- (V2 —1)% ~ 1.4477

but deteriorates as O PTy,p(G) increases. The approximation
guarantee of Christofides’ algorithm on the other hand is get-
ting better and better as OPTLp(G) increases. Comparing
these two ratios, one gets that the worst case happens when
OPT.p(G) = 24v/2-26 ), (see Figure 6) and, by using

. . . 16v/2-15 T
simple arithmetics, the approximation guarantee can be seen
14(v/2-1)
to be 57— u

6. CONCLUSIONS

We have introduced a framework of removable pairings
to find Eulerian multigraphs. This framework proved to be
useful to obtain an approximation algorithm for graph-TSP
with an approximation ratio smaller than 1.461 and to obtain
a tight upper bound on the integrality gap of the Held-
Karp relaxation for a restricted class of graphs that contains
degree three bounded and claw-free graphs. In particular, we
showed that in subcubic 2-vertex-connected graphs we can

always find a solution to graph-TSP of at most 4n/3 —2/3
edges, which settles a conjecture from [3] affirmatively.

Our framework is not restricted to graph-TSP. With the
same techniques and a more detailed analysis, our result
translates to the traveling salesman path problem on graphic
metrics with prespecified start and end vertex. In this way,
one is guaranteed to obtain an approximation ratio smaller
than 1.586 and, for the degree three bounded case, the
approximation ratio gets arbitrarily close to 1.5.

An interesting open problem is to improve the analysis
of the circulation network, i.e., Lemma 5.1. Recent progress
has been made on this by Mucha [20] who used a more
involved “knapsack” argument to prove that the presented
algorithm achieves a performance guarantee of 1.458 (1.583)
for graph-TSP (graph-TSPP) on general graphs. However,
similar to ours, his analysis degrades as a function of the
value of the linear programming relaxation. In particular, the
approximation guarantee of the algorithm for graph-TSP is
at most 4/3+1/9 when the linear programming value equals
the number of nodes of the graph. We therefore think that
it would be very interesting to investigate whether there is
an analysis that does not degrade with an increasing value
of the linear programming relaxation.

Finally, we note that the framework of removable pairings
is straightforward to generalize to general metrics, but the
problem of finding a large enough removable pairing in
such graphs in order to improve on Christofides’ algorithm
remains open.
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APPENDIX

Lemma 2.1 (Restated) Let G be a connected graph. If
there is an r-approximation algorithm for graph-TSP on
each 2-vertex-connected subgraph H of G (with respect to
OPTyp(H)) then there is an r-approximation algorithm for
graph-TSP on G (with respect to OPTy,p(G)).

Proof: Let A be an r-approximation algorithm for
graph-TSP on each 2-vertex connected subgraph H of G.
We shall now define an r-approximation algorithm A’ for
G as follows:

1) If G is 2-vertex connected then return the graph-TSP
solution obtained by running A on G.

2) Otherwise, let v be a cut vertex whose removal results
in the components C4,Cy, ..., C; with [ > 1. Recur-
sively run A’ on the [ subgraphs Gy, ..., G, induced
by C; U {v} and return the union of the obtained
Euleriean subgraphs.

From the description of A’ it is clear that it returns a
graph-TSP solution, i.e., a conneced Eulerian multigraph.
Moreover, as a vertex is selected as cut vertex at most
once, A’ terminates in time bounded by a polynomial in
the running time of A.

It remains to verify the cost of the solution compared to
the Held-Karp lower bound. We do so by induction on the
depth of the recursion. In the base case no recursive calls
are made so the solution is that returned by .4 which by
assumption is at most r - OPTp(G).

Now consider the inductive step when a cut vertex v
of G is selected whose removal results in components
Cy,Co,...,C; with [ > 1. Let E; be the multiset of
edges of the connected Eulerian multigraph obtained for the
graph G;. With this notation the Eulerian multigraph of G
returned by A’ is induced by Ule E; and we need to prove
Zle |E;| < r-OPTLp(G). By the induction hypothesis,
we have Y0, |Ei| < r- Y, OPTLp(G;) and it is thus
sufficient to prove Zle OPT.p(G;) < OPTLp(Q).

To this end, let  be an optimal solution to LP(G)
and let x' denote its restriction to the subgraph G;. As
each constraint in LP(G;) has an identical constraint in
LP(G) (using that v is a cut vertex), z* is also a solution
to LP(G;) and hence OPT.p(G) > YX_ OPT.p(G)),
which completes the inductive step and the proof of the
lemma. ]



